

Interactive Business Reporting in Microsoft
Excel

A Basic Interactive Report Example

by

Paul S. White

Copyright © 2025 by Paul S. White
All rights reserved. This book or any portion thereof may not be reproduced or used in any manner
whatsoever without the express written permission of the publisher except for the use of brief
quotations in a book review.

Table of Contents

Microsoft Excel as a Reporting Tool

Setting Up the Data

UNIQUE and SORT Formulas

Creating Drop Down Boxes for Report Parameters

The VLOOKUP Formula and Its Pitfalls

The Advantages of the SUMIFS Formula

Calculations with SUMIFS

Advantages and Disadvantages of the FILTER Formula

Using a PivotTable for Interactive Reporting

Documenting and Maintaining a Report

This Is Only the Beginning

Appendix

VLOOKUP

SUMIFS

UNIQUE

SORT

Microsoft Excel as a Reporting Tool

Like Word, Outlook, and other Microsoft Office tools, Excel is heavily used by businesses
today, particularly those operating in a Windows-based environment. It has a wide variety
of applications, from simple calculations and data storage to complex reports with
interactive features and data visualizations. I’ve personally been using Excel for over 30
years and have long championed its functionality as a reporting and analytics tool. Take
note that I am in no way a spokesperson for Microsoft, nor do I receive any compensation
from them for promoting the product. I’m simply acknowledging the reality of Excel’s
ubiquitous presence in the workplace and the versatile features it offers.

The fact is, because so many people are already familiar with Excel, they can leverage it for
business purposes without needing to understand all of its advanced features. Many users
are comfortable with basic functions like calculations, data entry, and copy-paste
operations, and for many business users, that’s sufficient for their everyday needs.
Additionally, if they have access to a report created in Excel—particularly one with
interactive components—they can view the data, apply filters, and grab the pieces of the
report that they need to add to presentations and/or other communications.

As an example of interactive features, below is a report in Excel showing regional
performance for the fictional company The Paper Connection. This report includes
functionality that allows the user to select the region and year from drop-down boxes in the
Criteria section in the upper right. Selecting different parameters updates the data in the
report to display year-over-year performance, Top 10 customers, and Top 5 sales
representatives. The user doesn’t need to understand the back-end functionality—they
simply select the parameters they need, then they can copy and paste, or do a screen grab,
if they want to incorporate part or all of the data into a presentation or other
communication. (You can download this and similar reports at the link provided to explore
the functionality further.)

This report relies on simple parameters, but there are many additional options for adding
advanced interactivity and automation in Excel. And even if interactive features aren’t
required, Excel remains a powerful tool for providing information in a clear, well-formatted
layout that’s easy to update and simple for business users to consume and interpret.

Where Excel does have some disadvantages compared to enterprise-level reporting
platforms is in data refresh automation. The report mentioned above, as currently
configured, requires a manual copy-and-paste of data into multiple tabs to update the
information. By contrast, Enterprise Resource Planning (ERP) tools and Business
Intelligence (BI) platforms often offer automated data refreshes that can be scheduled
throughout the day as needed. Once reports have been built and deployed on those
platforms, no human intervention is required unless there’s an error with the report or data
source.

That said, for some reporting use cases, an automated refresh isn’t necessary—particularly
for reports that are only updated on a periodic or ad hoc basis. The manual updating
process in Excel is fairly straightforward and can be easily documented, allowing other
team members to quickly get up to speed on maintaining the report. It’s also possible to
establish data connections that query data directly into the report and enable scheduled
refreshes. This approach typically requires additional coding or advanced configuration
and may limit the number of individuals capable of maintaining the report, but it’s certainly
a viable solution for certain scenarios.

Excel does have its limitations as a reporting solution, though, which is why IT departments
often prefer to standardize on ERP and BI tools that offer greater automation, data

governance, and scalability. However, Excel’s flexibility, robust data visualization features,
and user familiarity make it highly appealing to business users. Given that so many
employees across many organizations already have at least a basic proficiency with the
software, it makes sense to consider Excel as a reporting and data analysis option,
particularly when end-users ultimately want to manipulate or present data within the tool
they are most comfortable using.

In the following sections, I will walk through the creation of a simple interactive report in
Excel to highlight the features available in the tool.

Setting Up the Data

We are going to work with the sample data referenced in the prior post from the fictional
company The Paper Connection, and we’ll use that to address a request from a regional
manager to produce a report showing the Top 10 customers, segmented by sales
representative and year. We will build an interactive report that includes two filter options—
one for the sales rep and one for the year—and as these filters are adjusted, the data
displayed will dynamically update. This will not be a PivotTable report (though that’s
certainly a viable alternative, which we’ll explore later); instead, we’ll start by using Data
Validation, combined with VLOOKUP, SUMIFS, SORT, and UNIQUE functions to create an
interactive reporting experience. At the end, we’ll compare two different methodologies,
emphasizing their advantages and disadvantages, so you can determine which approach
best fits your reporting needs.

Note that I am assuming you have a basic working knowledge of Excel, particularly in using
formulas and formatting data. If you’re new to Excel, or if your experience is more
introductory, I recommend reviewing some beginner-level tutorials on YouTube or picking
up a user-friendly guide like Excel for Dummies. (the Dummies books are great for getting
you started on tools like this.)

For this report request, we’ll be working with a dataset containing three years of customer
performance data, which has been added to an Excel workbook and will act as the data
source for our report. This dataset includes 22 columns and 1,526 rows, which was
generated from a query against the system tables and then copied into the spreadsheet.
There are more automated ways to handle this data pull—using PivotTables or Power
Query, for example—but we’ll start with a simpler process that doesn’t require querying
expertise. This tutorial is focused on expanding your understanding of Excel’s interactive
capabilities, and we’ll address querying data into spreadsheets in a future session.

If you want to follow along with the instructions, starting with the base dataset, you can find
the file Interactive_Report_Ex_Datasets.xlsx at this link. We will be working with the data on
the Dataset_v1 tab. The final version of the report is also available at the same location

(Interactive_Report_Ex_v1.xlsx), and you can use that as a reference while building your
own version of the report.

For this exercise, we’ll paste the dataset into a new worksheet, starting at cell A1, and we’ll
title the tab Data_Cust_Perf. As part of my reporting standards and best practices, I
typically name data tabs beginning with the word “Data” followed by a brief description. I
also use underscores between words to maintain naming consistency and to simplify
referencing named ranges or structured data between worksheets in the interactive report.
While not strictly necessary, this practice helps maintain a clean, organized workbook
structure. You'll notice that the number fields in the raw dataset aren’t formatted—this is
fine for now, as we’ll handle formatting in the final interactive report. Another practice I
recommend is to apply a distinct fill color to the dataset—for example, I’ve used the green
fill color to easily identify the raw data source (1).

The interactive report will utilize the VLOOKUP formula, which requires a unique identifier
in the first column of the dataset. To create this, insert a new column at the beginning of the
worksheet and title it Lookup. In cell A2, enter the formula: “=B2&C2&N2” (1). This
concatenates the values from the Yr, SalesRep, and RepSalesRank columns to form a
unique key. Copy the formula down for all rows in the dataset. We’ll discuss the role of this
composite key in more detail when we review how VLOOKUP is leveraged in the report. I

(1)

(1)

also recommend visually distinguishing calculated columns by applying a different fill
color—in this case, I’ve used dark teal to highlight the new lookup column (1).

Column N (RepSalesRank) is part of the original data pull, with the rankings pre-calculated
at the query level. While Excel does offer a RANK function, it’s not the best fit for this
scenario. The RANK function calculates rankings over the entire dataset, which would
include all sales reps across all years. In this case, we need rankings segmented by sales
rep and year, so pre-calculating this metric upstream ensures better performance and
accuracy in the report.

That said, I did decide to include a demonstration of how to calculate a rank within groups
in Excel itself. We’ll add an additional column to the dataset, titled YearSalesRank, in
column V. In cell V2, enter the following formula:
“=SUMPRODUCT((B2=$B:$B)*(M2<$M:$M))+1” (1). Copy this formula down for all rows.
This ranks each customer’s sales within their respective year, so you can see how they
compare on a year-over-year basis. You’ll notice it may take a while to calculate because
SUMPRODUCT is computationally intensive, especially on larger datasets. This is one
reason I prefer to pre-calculate ranks in the data layer, but for demonstration purposes, it’s
useful to understand how this Excel formula works. And yes—this formula is a bit of an
Excel wizardry trick that can make your head spin! If you’d like a deeper explanation, you
can go to this link for additional reference. Since we won’t be using this ranking in the
immediate build, you can delete the formula after experimenting with it.

Now that we have our base data in place and formatted according to our reporting
standards, we’re ready to start building the interactive report.

(1)

https://trumpexcel.com/rank-within-groups-excel/

UNIQUE and SORT Formulas

We will be adding drop-down lists to this report, allowing users to select two parameters as
part of its interactive functionality. Before we do that, however, we need to set up the
source data that these lists will reference. To accomplish this, we will leverage the UNIQUE
and SORT functions in Excel. Additionally, we will create a separate tab in the workbook,
which I will name Drop_Down_Data, where this data will be stored and maintained.

One of the parameters will be Year, and the dataset we prepared in the previous section
contains three years' worth of data, ranging from 2022 to 2024. While we could manually
type these values into a list on the Drop_Down_Data tab, we are instead going to use the
UNIQUE function to automatically extract the distinct values directly from the primary
dataset.

In the first example, I typed "Year" as the header into cell A1, followed by manually entering
the three years into the next three rows. In the second example, we will automate this
process by entering the following formula in cell A2:
“=UNIQUE(Data_Cust_Perf!B2:B1527)”. You can either type the formula exactly as shown,
or you can enter =UNIQUE(, then navigate to the Data_Cust_Perf sheet and select the
desired range manually. Note that by using an underscore in the tab name
(Data_Cust_Perf), it simplifies the formula entry, especially if you are typing it directly.
Otherwise, you would need to use: “=UNIQUE('Data Cust Perf'!B2:B1527)”. Sometimes
those single quotation marks can be tricky, so I recommend using underscores for ease
and consistency in naming. Also, you only need to enter the formula in cell A2—this is a
dynamic array formula, meaning it will automatically spill into the cells below. Make sure
there is no existing data in those cells to avoid an error. As a best practice, avoid selecting
the entire column (e.g., =UNIQUE(Data_Cust_Perf!B:B)) as this will also return the header,

which may not sort as expected. Instead, select the range excluding the header row, as
shown above.

Now, in the manual list above, I sorted the years in reverse order because users are usually
going to be looking at the most recent year first. So we will combine the SORT function with
UNIQUE to get that same order. Following is the formula for that:
“=SORT(UNIQUE(Data_Cust_Perf!B2:B1527),1,-1)”. The number 1 following the UNIQUE
formula tells Excel to sort by the first column (which is your only option here) and the -1
tells it to sort in descending order. If you want ascending order, you use 1 instead.

Now, we will create the drop-down source data for Sales Reps, where the UNIQUE function
becomes even more valuable. For the Year field, there were only three values, making
manual entry manageable. However, for Sales Reps, we have considerably more entries. In
cell C1, enter the title "Sales Rep." Then, in C2, enter the formula:
“=SORT(UNIQUE(Data_Cust_Perf!C2:C1527), 1, 1)”. This provides a sorted list of all unique
sales rep names, ordered alphabetically (ascending). Once the list populates, select the
range C2:C24 (or however many rows are populated) and name the range
Lookup_Sales_Rep, following the same process you used for Lookup_Year.

(1)

(2)

Now we will add the Drop Down data for the sales reps and you will see where the unique
formula is much more useful. For Year, there are only three values in the list, so manually
typing those would not be difficult. But for sales reps, we have considerably more entries.
In Cell C1 enter the title Sales Rep and then in C2 enter the formula:
“=SORT(UNIQUE(Data_Cust_Perf!C2:C1527),1,1)”. Now we have a nice list of the unique
sales rep names sorted alphabetically. We will then select the range C2:C24 and name it
Lookup_Sales_Rep like we did with Lookup_Year above (more on why we did that in the next
section).

At this point, it should be clear why we’re taking this approach with Sales Reps. While it’s
easy to manually enter a few years, handling a list of 44 sales reps is more tedious and
prone to error. You could copy and paste the list from a query output, but using the UNIQUE
and SORT formulas ensures the drop-down list dynamically adjusts to reflect any changes
in the dataset—such as new sales reps added after a data refresh.

That said, you will need to verify whether your named ranges are capturing all of the entries
if your dataset expands. If additional rows are added, you can adjust the named ranges
accordingly:

1. Go to Formulas > Name Manager (1).
2. Select the named range you wish to adjust (2).
3. Update the Refers to field with the new range (3).
4. Click Close, and confirm the changes when prompted.

You will notice that I highlighted both of these columns with Dark Teal to indicate that they
have formulas similar to what I did on the Data_Cust_Perf tab. That will be important at the
end of the process for documentation. As an option, instead of using the UNIQUE and
SORT formulas, this data could be automatically queried into the sheet, and that would
eliminate the need to update the named ranges. But as I mentioned previously, I will not be
getting into querying data in this exercise.

(1)

(2)

(3)

In the next section, we will create the drop down boxes that will reference the data we
prepared above.

Creating Drop Down Boxes for Report Parameters

Drop-down boxes can be a valuable tool for providing users with a defined set of
parameters to select from, improving both usability and data integrity in an Excel report.
There are two primary ways these can be added to an Excel spreadsheet. You can add a
drop-down box via the Insert menu under Form Controls in the Developer ribbon, or you
can create it through the Data Validation feature located in the Data ribbon. Both methods
have their merits, but Form Controls are typically used when the selection needs to trigger
a macro or VBA code for automation purposes. Since we don’t need that functionality here,
we’ll use the simpler option: Data Validation.

To add a drop-down list, first select the cell where you want the drop-down to appear. Then,
navigate to the Data ribbon, click on Data Validation (1), and select the first option, Data
Validation. A pop-up form will appear with several configuration options for the drop-
down. Under the Allow criteria, select List (2), and leave the default settings unchanged. In
the Source field, you can manually type the options you want available in the drop-down,
separated by commas (3). For example, I entered the three years corresponding to the
dataset we’re working with. After clicking OK, Excel creates the drop-down list, and you will
be able to select one of the three years from the menu.

However, in the previous section, we created named ranges specifically for our drop-down
lists, so we’ll use those instead. Create a new tab in the workbook and name it
Sales_Rep_Top_10. Then, select cell B2. Open Data Validation, select List (1), and in the
Source field, type “=Lookup_Year” (2), which refers to the named range we established for
the year selection. (You can also click the arrow next to the Source field and manually
select a range from the sheet, but I find it more efficient to create named ranges and
reference them directly in the formula.) Click OK to create the year drop-down list.

Next, select cell B4 and repeat the same steps. This time, enter “=Lookup_Sales_Rep” as
the source to create the drop-down list for Sales Representatives.

When you click in a cell where a drop-down is created, you’ll see an arrow appear,
indicating a selection list is available (1). Aside from the arrow, there’s no visual indicator
that the cell contains a drop-down, so I recommend formatting these cells and adding
clear labels to make it obvious where user inputs are expected (2). Additionally, it’s a best
practice to assign defined names to these cells via Formulas >> Define Name, naming
them Select_Year and Select_Sales_Rep respectively. This allows for easier reference in
formulas and improves workbook organization.

An alternative method to assign a defined name is to select the cell and type the name
directly into the Name Box, located in the upper-left corner next to the formula bar (1).

Now that we’ve created the drop-down lists for the report parameters, the next step is to
begin building out the dynamic report, which will reference these inputs for interactive
functionality.

The VLOOKUP Formula and Its Pitfalls

The next part of the report we are building will involve incorporating the VLOOKUP function,
and I’m going to assume a basic familiarity with how VLOOKUP works (if not, you can find a
brief explanation at this link). That said, I’ll still walk through a couple of quick examples to
demonstrate some of the common pitfalls associated with using this function. While

https://support.microsoft.com/en-us/office/vlookup-function-0bbc8083-26fe-4963-8ab8-93a18ad188a1

VLOOKUP can be highly effective for retrieving text-based data from a flat file or dataset,
you need to be cautious when using it, or you may not get the results you expect.

First, I’ll construct a simple VLOOKUP formula that looks up a customer name by sales
representative:

“=VLOOKUP("Alex Kwon",Data_Cust_Perf!C:E,3,FALSE)”.

You’ll see that I’ve hard-coded the rep’s name in the formula. The search is being
performed within columns C through E on our Data_Cust_Perf tab, which contains the
Sales Rep name, Customer Account number, and Customer Name. The formula’s starting
reference is Column C, and the range extends to Column E, with VLOOKUP returning the
value from the third column in that range, based on an exact match.

The issue here is that Sales Reps often manage multiple accounts, and VLOOKUP will only
return the first match it encounters (based on how the data is sorted). This is why the
formula as written has limitations. To address this, we created a unique identifier in
Column A, which we will leverage shortly (more on that below).

Another common issue with VLOOKUP arises when the structure of the data changes, such
as adding or removing columns in your dataset. For example, suppose the formula above is
already saved in a cell, but later you insert a CustomerSegment column between CustAcct
and CustName. The Table_Array reference would automatically expand (from C:E to C:F),
but the Col_Index_Num (3) wouldn’t automatically adjust. As a result, the formula would
now return the Customer Segment rather than the Customer Name. This demonstrates

why you need to carefully manage VLOOKUP references and be mindful of these potential
pitfalls.

Now that we’ve reviewed the mechanics of VLOOKUP, we’ll begin configuring the
interactive report by entering the column headers for the data we want to display. These
headers will include ranking numbers for the Top 10 Customers by Sales Rep and Year.
There’s no need to worry about formatting at this stage; we’ll handle that during the final
design phase. And the VLOOKUP will only be used to pull the first six fields of data: Acct#,
Customer Name, Own Reg, Sales Rep, Type, Segment. The rest of the data we will get by a
different means in the next section.

With the report template created, I’m now going to enter the following formula into cell E5:

“=VLOOKUP(Select_Year&Select_Sales_Rep&$D5,Data_Cust_Perf!$A:$I,4,FALSE)”.

Here’s a breakdown of each component of the formula:

Lookup_Value: This concatenates the Select_Year parameter, the Select_Sales_Rep
parameter, and the value in cell D5 (the rank number). This creates a composite key that
matches the Lookup field we previously generated in the Data_Cust_Perf tab. It allows us
to return multiple customer records, as opposed to just one (which was a limitation in our
earlier example). Column D is anchored with a dollar sign ($) so that it remains fixed when
the formula is copied down.

Table_Array: This specifies the range from Column A to Column I, referencing the entire
columns. The range is anchored with dollar signs ($) to ensure it stays constant when
copied. While you could reference a specific range (e.g., A1:I1527), I prefer using
entire columns to account for potential data refreshes that expand the dataset. We’ll
discuss data range management and performance considerations later.

Col_Index_Num: This retrieves data from the fourth column in the specified table array,
which corresponds to CustAcct.

Range_Lookup: Using FALSE specifies an exact match, ensuring we only return results
where the Lookup Value matches exactly.

You will see that in Cell E5, the account number for the selected sales rep’s top customer is
now showing up.

The next step is to copy that same formula to Cells F5:J5. After doing that, we will edit the
formula in each cell to adjust the Col_Index_Num to the corresponding field we are pulling
in from Data_Cust_Perf: for F5 it will be 5, G5 it will be 7, H5 = 3, I5 = 8, and J5 = 9. Next up,
we will copy the formulas in Cells E5:J5 down to cover all ten rows.

For the Sales Rep you select, all ten rows should populate accordingly. You’ll notice that
our composite key successfully retrieves each individual customer in the Top 10 ranking,
rather than returning duplicates of the first match. However, not all Sales Reps have ten
customers in the dataset, so we need to account for that within our report design. For
example, select 2022 and Debbie Green from the drop-down lists and observe the results.

You’ll notice errors (i.e., #N/A) in the cells where no data was found—because there were
only three customers for that Sales Rep in 2022. This isn’t ideal for data visualization, so
we’ll handle it by wrapping the VLOOKUP in an IFERROR function. Update the formula to
read:

“=IFERROR(VLOOKUP(Select_Year&Select_Sales_Rep&$D5,Data_Cust_Perf!$A:$I,4,FALSE
),"-")”.

This will display a dash ("-") instead of an error, providing a cleaner and more professional
appearance for the report. (Alternatively, you can have it return a blank by using "".)

Apply the IFERROR wrapper to all cells in the top row (E5:J5), then copy the updated
formulas downward to cover all ten rows. And yes, I could have mentioned this earlier—but
this highlights an important quality control step in report development!

Up next, we will fill in the data for the other fields, but with a different formula.

The Advantages of the SUMIFS Formula

As I mentioned in the previous post, there are some pitfalls when using the VLOOKUP
function, which is why I try to rely on it as little as possible. It’s necessary when bringing in
text data, and I typically use it for numerical values that don’t require aggregation—such as
the Account Number and Region Number we are pulling into the report we are building.

However, for aggregated numerical data or metrics, I prefer using SUMIFS, which I find to be
much more versatile and efficient in dynamic reporting scenarios.

I only gave a quick overview of VLOOKUP earlier, but I’ll spend a little more time on SUMIFS,
because I find that not many users are familiar with it (you can read more about it at this
link). This function allows you to sum values from a dataset based on one or more criteria,
making it ideal for summarized reporting and performance analysis. Here’s the basic syntax
for SUMIFS:

SUMIFS(sum_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...)

In this case, the sum_range is the column of data we want to aggregate—in our current
report, we’ll start with Sales and work our way across to other metrics. The Sales data
resides in column M of the Data_Cust_Perf worksheet, so the sum_range will be:
“=Data_Cust_Perf!$M:$M”

We are filtering this data by three parameters: Year, Sales Rep, and Account Number.
Therefore, we’ll include three criteria pairs in our formula.

• The Year data is located in column B of Data_Cust_Perf, making it criteria_range1.
The criteria1 will be the Select_Year parameter.

• The Sales Rep data is in column C, which will be criteria_range2, with criteria2
being Select_Sales_Rep.

• The Account Number is in column D, which makes it criteria_range3, and we’ll
reference the corresponding Acct # in column E of the Sales_Rep_Top_10 sheet for
criteria3.

Building the formula

1. Go to cell K5 in the Sales_Rep_Top_10 worksheet.
2. Type “=SUMIFS(” to start the formula.
3. Navigate to the Data_Cust_Perf worksheet and click on column M. Excel will

automatically insert Data_Cust_Perf!M:M into the formula.
4. Continue by typing a comma, then selecting column B, followed by another comma,

then entering “Select_Year”.
5. Repeat the pattern: comma, select column C, comma, enter “Select_Sales_Rep”.
6. Finally, add another comma, select column D, another comma, and click back to

Sales_Rep_Top_10 and select cell E5.

At this point, your formula should look like this:

“=SUMIFS(Data_Cust_Perf!M:M,Data_Cust_Perf!B:B,Select_Year,Data_Cust_Perf!C:C,Sele
ct_Sales_Rep,Data_Cust_Perf!D:D,Sales_Rep_Top_10!E5)”

Once you press Enter, you should now see a Sales value populate in cell K5.

Note: Sometimes, the SUMIFS function helper window will pop up and cover the columns
you want to select (1). If that happens, you can hover the mouse above the pop-up until the
cursor changes to a down arrow, then click. If that doesn’t work, you can manually type in
the column reference.

Once you have completed the formula, you will want to go in and edit it to anchor the
columns by adding “$”:

“=SUMIFS(Data_Cust_Perf!$M:$M,Data_Cust_Perf!$B:$B,Select_Year,Data_Cust_Perf!$C:
$C,Select_Sales_Rep,Data_Cust_Perf!$D:$D,Sales_Rep_Top_10!$E5)”.

Note that you only add the “$” in front of E for the Acct # because that changes with each
row and you do not want to anchor on that cell alone. (Look at how the formula adjusts to
the row in the cells below to understand how that works.)

Now you can copy the formula across to the other cells in the first row where additional
metrics are required. Adjust the sum_range for each metric you want to bring in:

• Gross Profit → $R:$R
• GP % → $S:$S
• And so on...

The criteria ranges remain the same since they continue to filter by Year, Sales Rep, and
Account Number.

Once the column references have been updated, you can copy these formulas down to
populate all ten rows in your Top 10 customer list.

For fields such as GP %, NP %, and Sales per Order, these are calculated fields. However,
since they are already pre-calculated in the dataset, you can pull them directly instead of
recreating the calculations in your report. (I will demonstrate how to manually calculate
them in the next section.)

You may notice that, unlike VLOOKUP (which returns “#N/A” for missing data), the SUMIFS
function returns a zero when there is no matching data. While this isn’t technically an error,
it may be inconsistent with how we formatted empty results earlier using a dash ("-").

For consistency in data presentation and user experience, we’ll wrap the SUMIFS formula
in an IF statement to check if the first column (E) displays a dash, and if so, display a dash
in the SUMIFS result as well.

The revised formula looks like this:

“=IF($E5="-","-
",SUMIFS(Data_Cust_Perf!$M:$M,Data_Cust_Perf!$B:$B,Select_Year,Data_Cust_Perf!$C:$
C,Select_Sales_Rep,Data_Cust_Perf!$D:$D,Sales_Rep_Top_10!$E5))”.

Apply this IF logic to all relevant formulas and copy them down through all ten rows to
ensure uniform formatting in the report.

Next up, we will explore SUMIFS further to add some summaries and other calculations.

Calculations with SUMIFS

We now have our report at a point where we can enhance its visual presentation and data
readability. This will include formatting numeric columns as currency, percentages, or

numbers, as appropriate, and bolding the header row for clarity. I’m not going to walk
through these formatting steps in detail, as I’m assuming a basic working knowledge of
Excel formatting, but feel free to do that on your own as you please.

The next step will be to add totals and comparative metrics, which will involve further use
of the SUMIFS function, along with variations that support advanced analytics.

We’ll begin by adding a totals row at the bottom of the report to show a summary of the Top
10 accounts by Sales Rep (1). For basic metrics like Sales, Gross Profit (GP), and Net Profit
(NP), this is straightforward—you can simply use the SUM function. For calculated metrics
such as GP % and NP %, you’ll use the respective totals to derive those percentages:

GP % = Sum of Gross Profit / Sum of Sales
NP % = Sum of Net Profit / Sum of Sales

For Sales per Order, Lines per Order, and Quantity per Line, we need to take a different
approach. These metrics are pre-aggregated in the dataset, and we don’t have the
transaction-level data in this summary report to accurately calculate them using basic
Excel functions. While you could use the AVERAGE or AVERAGEIFS function, this would
result in an average of averages, which may not reflect the true values accurately.

Since we have access to the underlying raw data in the Data_Cust_Perf tab, we’ll use
SUMIFS to calculate more precise metrics in the totals row. Specifically, we’ll sum the
Sales and divide that by the sum of Orders for the most accurate representation of Sales
per Order.

The formula for sales will be as follows:

“=SUMIFS(Data_Cust_Perf!$M:$M,Data_Cust_Perf!$B:$B,Select_Year,Data_Cust_Perf!$C:
$C,Select_Sales_Rep,Data_Cust_Perf!$N:$N,”<=10”)”

The key difference here is in the third criterion, where we reference column N (which
contains the RepSalesRank). The criterion "< =10" ensures that only customers ranked in
the Top 10 are included in the calculation. The quotation marks are required around the
comparison.

To do the full calculation, we need to add the same formula again but point the
source_range to Column J in the dataset which is OrderCt. So in Cell O15 we will have a
SUMIFS pulling sales divided by another SUMIFS pulling orders. It is definitely a beast of a
formula, but it is the most accurate way to pull the data. We will then do the same thing for
Lines/Order, referencing Column K in the dataset for Lines, and Qty/Line, referencing
Column L for Qty.

Next, we will add a total line to show all of the sale rep’s activity and this will act as a
comparison to the Top 10. We will use the same formula as above, tweaked for each
corresponding column, but we will take out the third criteria to pull all activity for the sales
rep instead of just the top customers. That formula for Sales/Order will look like this:

“=SUMIFS(Data_Cust_Perf!$M:$M,Data_Cust_Perf!$B:$B,Select_Year,Data_Cust_Perf!$C:
$C,Select_Sales_Rep)/SUMIFS(Data_Cust_Perf!$J:$J,Data_Cust_Perf!$B:$B,Select_Year,D
ata_Cust_Perf!$C:$C,Select_Sales_Rep)”

Adjust the columns as necessary for the calculations for Lines/Order and Qty/Line.

For the final version of the report, we can do some additional formatting to pretty it up by
visually separating the Criteria section from the report, adding headers, adjusting the
columns, taking out the grid lines, etc. That is to make it printer and/or presentation
friendly, and I won’t go into the details of that, but you can see that in the example file.

Next up, I am going to do the same report, but with the FILTER formula which has its
advantages and disadvantages.

Advantages and Disadvantages of the FILTER Formula

Now, after building the report above using multiple formulas, I’ll demonstrate how to pull
all the same data using just one formula: FILTER. You, of course, may ask why we didn’t use
FILTER in the first place. That’s because while FILTER has its advantages, it also has
limitations—specifically around flexibility and customization. I use it in specific scenarios,
but typically I prefer SUMIFS, or a combination of VLOOKUP and SUMIFS, because they
offer greater control and scalability for complex business reports.

The FILTER function pulls data from a dataset into a defined cell range based on
parameters specified in the formula. However, it returns data in the exact column order as
it exists in the source dataset. This means you need to ensure the original data structure

matches the desired report layout, or you’ll have to manually reorder the columns either
before or after importing the data into Excel.

For this exercise, we’ll use a second version of the dataset, available in the file
Interactive_Rept_Ex_Datasets.xlsx on the tab Dataset_v2 which you can download at
this link. If you want to follow along, I recommend starting a new workbook and copying the
dataset into a tab named Data_Cust_Perf.

We will use the same input parameters we set up previously. To start, we’ll apply a single
parameter filter to demonstrate how the function works. In cell E7 of the Sales_Rep_Top_10
tab, enter the following formula:

“=FILTER(Data_Cust_Perf!A1:S1527,(Data_Cust_Perf!B1:B1527=Select_Sales_Rep))”.

This pulls all data from the Data_Cust_Perf tab where the Sales Rep matches the value
selected in Select_Sales_Rep. Note that FILTER returns all columns from the range,
including redundant data such as the Year and Sales Rep columns. We could limit the
returned columns by adjusting the column range (e.g., stopping at column P), but in this
example, we’re including the full dataset because we’ll use that additional data later.

The spill range dynamically fills the rows and columns with data that meets the specified
criteria, but you will need to manually type in the headers.

https://fastrakdata.com/interactive-reporting-in-excel/
https://fastrakdata.com/interactive-reporting-in-excel/

To add additional filter criteria, enclose each in parentheses and separate them with an
asterisk (*) to represent an AND condition. For example, here’s the version of the formula
that filters by Year and limits the data to the Top 10 customers:

“=FILTER(Data_Cust_Perf!A1:S1527,(Data_Cust_Perf!A1:A1527=Select_Year)*(Data_Cust_
Perf!B1:B1527=Select_Sales_Rep)*(Data_Cust_Perf!C1:C1527<=10))”

This produces a dataset similar to our earlier reports, except it includes additional columns
like Year, Sales Rep, and the OrderCt, LineCt, and TotQty fields at the end. We’ll simply hide
these columns in the final version to focus the report on the key metrics.

For better data presentation and to ensure the records are sorted by Top 10 rank, we can
nest the FILTER function within SORT to assure the results are sorted by the third column
(Sales Rank) in ascending order:

“=SORT(FILTER(Data_Cust_Perf!A1:S1527,(Data_Cust_Perf!A1:A1527=Select_Year)*(Data_
Cust_Perf!B1:B1527=Select_Sales_Rep)*(Data_Cust_Perf!C1:C1527<=10)),3,1)”.

For documentation purposes, highlight the data in columns E, F, U, V, and W in Plum (1) to
indicate they will be hidden in the final report. Afterward, you can add totals at the bottom
of the data using basic aggregate functions such as SUM, since the data has already been
filtered appropriately (2).

This is one of the advantages of FILTER—it allows you to use the visible dataset for
calculations without needing to rely on separate criteria-based formulas like SUMIFS.

The totals row that shows all of the sales rep’s activity (1) will still need to use the SUMIFS
formula like we did in the previous section because it has additional data beyond what the
FILTER is pulling in. As an option, we could hide any rows beyond the Top 10 customers,
but that varies by rep, and the spillover data may conflict with the totals and cause an error.
So instead, the SUMIFS is probably the better way to go.

From this point, we can format the report as we did before and hide the columns that are
not needed. In the end it looks the same, but I prefer not to have data on the report tab that
is not needed. Also if we want to add a column with additional calculations, it would have
to go at the end. Or we would have to add it on the tab with the dataset in the order that we
want it to appear on the report. Take for example if we decided to bring in the overall sales
rank we added to the first dataset, I would have to do at the end which does not look great
from a data visualization perspective, or we have to re-order the columns in the dataset.

Ultimately, you can decide which method you prefer. The FILTER formula is pretty simple
once you get the hang of it, but it is less flexible, and you may need to figure out how to
work in data that is not part of the dataset. The combination of VLOOKUP and SUMIFS
requires more formulas, but gives you more control over the data you bring in and more
flexibility.

Up next, we will build a similar report using a simple Pivot Table.

Using a PivotTable for Interactive Reporting

PivotTables also offer an option for interactive reporting, but as with any reporting method,
there are both advantages and disadvantages. If you have a solid understanding of
PivotTables, they can be a powerful analytical tool, allowing you to summarize, analyze,
and explore data with relative ease. However, if you're creating reports that will be used by
people who are not well-versed in PivotTable functionality, there can be many user
experience pitfalls. When I do utilize PivotTables in reporting solutions, I usually design
them in such a way that the interactive elements are intuitive and easy to navigate for end
users.

I am going to assume that you have basic knowledge of PivotTables, though if not, the
instructions I provide should still get you through the process. To start, we’ll return to the
original dataset as our base data source. Select columns B through U from the
Data_Cust_Perf tab, then navigate to the Insert ribbon and select PivotTable >> From
Table/Range (1). This will open a Create PivotTable dialog box (2); accept the default
option to create the PivotTable on a new worksheet and click OK.

This will create a blank PivotTable canvas on the left and open the Field List on the right.
We’ll start by adding the row fields, which will make up the first columns of the report,
followed by the numeric values for our analysis. We won’t be using the Columns section
here, as we are creating a flat-file report structure.

Hover your mouse over the Yr field (1) in the PivotTable Fields list, then left-click and drag
it into the Rows area (2). Repeat this process for the following fields: SalesRep, CustAcct,
CustName, OwningRegNo, CustType, and CustSegment. You’ll notice that in the PivotTable
on the left, each field is nested beneath the previous one and indented (3)—this is not the
layout we want, since we are aiming for a tabular, flat-file output. We’ll need to adjust the
layout formatting.

Click on the CustSegment field in the Rows box and then on the Field Settings (1) options
in the pop up menu. This brings up the Field Settings popup where we will adjust the
properties of how the field is displayed.

Make the following adjustments:

1. Change the Custom Name to a more report-friendly label "Segment" (1).
2. In the Subtotals & Filters section, select None (2).
3. Navigate to the Layout & Print tab (3), and in the Layout section, select Show item

labels in tabular form and Repeat item labels (4).
4. Click OK.

Repeat these adjustments for SalesRep, RepSalesRank, CustAcct, CustName,
OwningRegNo, and CustType, renaming them for clarity (e.g., "Sales Rep", "Rank", "Acct#",
"Customer Name", "Own Reg", and "Type"). While renaming isn’t strictly required, I
recommend it to ensure column headers are user-friendly and align with reporting
standards.

Once the fields are set to tabular form, we can add the numerical data fields—Sales,
GrossProfit, and NetProfit—to the Values area. These will also display in the tabular layout,
and since the PivotTable doesn’t create subtotals for values added in this section, we get a
flat output appropriate for data analysis and export.

You will see that in the Rows section, “Sum of” has been added in front of the field name
and it is also displayed that way in the Pivot Table. That is because Sum is the default
selection for numeric fields, though that can be changed to Average, Max, Min, etc. We will
keep it as Sum and format the Sales field by clicking on the Sum of Sales box in the Rows
section and selecting Value Field Settings. We will rename the field to “Tot Sales” (1) and
then click on the Number Format button (2). (Note that since we have the field Sales in the
original dataset, we cannot rename a calculated field using the same name, thus the
reason we used “Tot Sales”.) For the Number Format, select Currency (3) and 0 decimal
places (4). Do the same for GrossProfit and NetProfit, renaming them “Gross Profit” and
“Net Profit” respectively.

For calculated fields like GP %, NP %, Sales/Order, etc., you could use the Average
aggregation function. However, this would yield an average of averages, which isn’t
mathematically accurate for most business reporting needs. Instead, we’ll create
Calculated Fields to ensure the accuracy of these metrics.

Navigate to the PivotTable Analyze ribbon and select Fields, Items, & Sets >> Calculated
Field. In the Insert Calculated Field dialog box:

1. Enter “GP_Prcent” in the Name field (1).
2. In the Formula field, type “=GrossProfit/Sales” to create a gross profit percentage

calculation (2).
3. Click OK to add the field.

By default, the calculated field displays as a numeric field with the aggregation set to Sum.
We’ll need to change that to Average. Click Sum of GP_Prcent in the Values area (1), select
Value Field Settings, change the aggregation to Average, and adjust the Number Format
to Percentage with one decimal place. Rename it "GP %".

Repeat this process for the following calculated fields:

• NP % = NetProfit/Sales
• Sales/Order = Sales/OrderCt
• Lines/Order = LineCt/OrderCt
• Qty/Line = TotQty/LineCt

Important: When creating calculated fields, you must give them unique names that do not
conflict with any column names in your dataset (e.g., "GP_Prcent" initially, then rename it
"GP %").

Now we’ll apply a Rank Filter to limit the results to the Top 10 customers. Click the filter
drop-down in cell A3, choose the Rank field, and select Label Filters (1) >> Less Than or
Equal To (2). Enter 10 in the filter dialog box (3) and click OK.

To finalize the interactive components, add additional spacing to your worksheet so that
the report headers start at row 14. Then, click anywhere inside the PivotTable, navigate to
the PivotTable Analyze ribbon, and select Insert Slicer (1). Choose Yr and SalesRep as
slicer fields (2) and click OK.

Reposition the slicers above the data area for better user interface layout. Right-click the
SalesRep slicer (1), select Size & Properties, and adjust the Layout in the Position and
Layout section (2) so the slicer displays 3 columns of Sales Reps to make it easier to work
with. Adjust the slicer width as necessary to display names clearly.

In our final version, selecting a Year and a Sales Rep from the slicers produces essentially
the same report as we generated previously, with totals automatically calculated at the
bottom of the PivotTable. However, you’ll need to include both the Year and Sales Rep
fields in the report itself to ensure clarity, especially when multiple slicer selections are
available—otherwise, the report might combine data in unintended ways.

Also, avoid adding custom totals beneath the PivotTable. If slicer selections generate too
many results, it can trigger conflicts with any manually inserted rows and create an error.
This, along with some formatting quirks, is one reason why I might opt not to use
PivotTables for final report delivery. Still, they offer powerful interactive capabilities,
especially for ad-hoc reporting and data exploration.

This was a high-level overview of building an interactive report using PivotTables and should
not be considered a comprehensive guide. That said, it demonstrates the versatility and
analytical power of Excel’s PivotTable tool—capabilities that are further enhanced when
combined with Power Pivot and other advanced data modeling techniques.

To close out our interactive report example, I will cover documentation to assure
sustainability of the report.

Documenting and Maintaining a Report

So we have built the same report in three different formats and all have generally the same
end result. Now it is important to document what we have done so that if it needs to be
refreshed, there are instructions to act as a guide. This is important even if the report is a
one-time request because there is always a chance that this report or something similar
will be requested again. Throughout my career, there are multiple times where I have

generated an ad hoc report quickly and sent it out without documenting it, then a year later
I get asked for the same report again and had to spend unnecessary time figuring out how I
originally pulled the data together. Proper documentation makes it much easier to go back
and refresh the report or for a co-worker to step in and take over.

Before diving into documentation, let’s assume the requestor came back with a change:
they’d like the Overall Sales Rank field added after the Segment field. We’ll reference this
adjustment in our documentation. For the first version of the report, this is fairly simple. We
just add a column between Segment and Sales and insert a VLOOKUP formula to bring in
the Overall Sales Rank, which we had previously included in the dataset.

If the requestor had wanted the field in a different position, say after Customer Name, we
would have needed to adjust the Col_Index_Num in the subsequent columns of the
report—something I covered in the VLOOKUP section earlier. But we will assume the
requestor went easy on us.

How you choose to document a report may vary depending on the audience, but even for a
one-off ad hoc report, it’s important to provide enough information to support future
refreshes or handoffs to other team members. This report, for example, includes a dataset
and several formulas that will require updates whenever the data is refreshed, so the
documentation needs to cover those points clearly.

To start off with, I will add a tab titled Report_Info that will contain much of the
documentation. The first section of that tab will just have basic info like the file name, the
requestor name, the name of the person who created the report, and when it was last
updated.

The second section will contain a description of each of the report and data tabs along with
action items that need to be carried out when the report is refreshed. As you will recall, we
previously highlighted data and formula cells to separate them out, and I will be referring to
that formatting here.

The next section will have the info on the query or queries that need to be run to update the
data. More sections can be added to the report if additional documentation is needed. And
if this were to become an ongoing report with regularly scheduled refreshes, more thorough
documentation would be required.

Finally, the Drop_Down_Data tab, there is some additional documentation calling out the
formulas used and the need to update the Named Ranges after a refresh.

Some reports may not require as much documentation, but the main thing you want to
address is the business continuity and the ability to refresh the report in a timely manner.
And even if this is one-time ad hoc request, I still like to provide enough information in case
refresh is requested or the existing request evolves into a larger report.

This Is Only the Beginning

This exercise was designed to demonstrate some of the basic interactive functionality
available in Excel, and how these features can be applied to a relatively simple reporting
request. Technically, we could have satisfied the original request by providing a raw data
export from a query and allowing the requestor to apply filters. Instead, we provided a user-
friendly, interactive report, complete with totals and comparative metrics, to enhance
decision-making and data storytelling.

There are numerous additional interactive tools and features available in Excel, including
PowerPivot, Power Query, Macros, and more. Each has its place in data analysis and

business intelligence, but sometimes simpler solutions are the best approach—especially
for ad hoc requests or for teams without access to advanced BI tools.

I will be following this up with an exercise that does take the report to the next level and that
creates a performance dashboard for Regional Managers to use in tracking how their
regions and sales reps are progressing. That will rely upon some more advanced features
and allow you to take your skills in interactive report creation in Excel to the next level. That
will be covered in Part 2 of this series.

Appendix

VLOOKUP

VLOOKUP stands for Vertical Lookup. It’s a function in Excel that searches for a value in the
first column of a range (or table) and returns a value in the same row from another column.
It’s one of the most commonly used lookup and reference functions in Excel for pulling
related data from tables.

Basic Syntax of VLOOKUP:

VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])

1. lookup_value

The value you want to find in the first column of the table array.
(Example: An employee ID, product code, etc.)

2. table_array

• The range of cells that contains the data.
• The first column in this range is where Excel will look for the lookup_value.

3. col_index_num

The column number in the table_array from which to retrieve the value.
(1 = first column, 2 = second column, etc.)

4. [range_lookup]

Optional. Enter FALSE for an exact match, or TRUE for an approximate match.
If you leave it blank, Excel defaults to TRUE.

How It Works (Example):

In the dataset above, there are multiple customers for each rep and we want to find the
CustSegment by searching on CustAcct.

If we type in a customer account number in Cell C2 and then the following formula in D2
“=VLOOKUP(C2,C5:H21,6,FALSE)”, it will return the CustSegment value of “Medium”. That
looks for the value referenced in Cell C2 in the range specified and pulls the sixth column
from the start of the range. If we then type another value into C2, it will return that
customer’s segment info. We can also type the account number directly into the formula
instead of the cell reference of C2.

However, take notice in the dataset that the account number occurs twice. That is a
national account that is serviced by a sales rep in a different region. If the dataset is sorted
as it is above, it will still return the same result, as it will look for the first match. As a
solution to this, you can combine columns B & C to create a unique reference and then use
that as the lookup_value for the formula. See the section above on VLOOKUP as an
example.

Using the TRUE range_lookup:

Typically we will use FALSE as the range_lookup in the VLOOKUP formula because we will
be wanting an exact match. But there are cases where close is good enough. We will bring
in Qty/Line into the same dataset as above and let’s say we are trying to establish a Key
Performance Indicator (KPI) that metric. We will establish a classification that Qty/Line of 0
to 3 is Low, 3 to 6 is Average, and above 6 is Optimal.

We will create a grid starting in Cell N4 with the base Qty/Line and the classification then
use that to bring the Level over to the dataset. The VLOOKUP formula will reference the
Qty/Line value in Column I and test it against the grid we established to see what Level it
falls into. If it is greater than or equal to 0 and less than 3, it is Low, greater than or equal to
3 and less than 6 it is Average, greater than or equal to 6 and less than 99 it is Optimal.
Note that you have to have a top range and repeat the Level there for the formula to work.
So just include a number that is higher than the metric would exceed. Note that you do
need to anchor the range in the table_array section with “$” before copying it down,
otherwise the cell references will change.

Key Things to Remember:

• VLOOKUP always searches vertically (top to bottom).
• The lookup value must be in the first column of the table array.
• If there are duplicate values in the first column, VLOOKUP returns the first match it

finds.
• It can be case-insensitive (doesn't distinguish between uppercase and lowercase

letters).
• Col_index_num must be a number, not the column letter.

Limitations of VLOOKUP:

• It can only search to the right of the lookup column.

• Large datasets can slow down calculations.
• It's somewhat outdated, and there are alternatives like XLOOKUP and

INDEX/MATCH which are more flexible and available in newer versions of Excel.

SUMIFS

SUMIFS is a conditional summing function in Excel. It allows you to add values in a range
based on multiple criteria. It’s commonly used in business reporting when you need to sum
data that meets several conditions—for example, sales totals for a specific region, time
period, or product.

Basic Syntax of SUMIFS:

SUMIFS(sum_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...)

1. sum_range

The range of numbers you want to add up.
(Example: Sales amounts, units sold, etc.)

2. criteria_range1

The range of cells that you want to apply the first condition to.

3. criteria1

The condition you want applied to criteria_range1.
(Example: A specific product name, date, region, etc.)

4. [criteria_range2, criteria2], ...

(Optional) You can add additional pairs of ranges and criteria to narrow down your
summing.

How It Works (Example):

In the dataset above, we have sales by customer, and by each sales rep we want the total
sales for Top Tier Customers. In Column K we type the sales rep name once for each and in
Column L we typ in “Top Tier” once for each. In the Cell M2, type the formula
“=SUMIFS(I:I,B:B,K2,H:H,H2)”. This looks at the data in Column I (Sales) and sums that
where it finds a match for the sales rep in Column B and the Top Tier segment in Column H.
The results are the sums for just the Top Tier customers. You will note that for rep Alberto
Hunt, the sum total matches the sales for customer Allied Factories because that is his
only Top Tier customer. Paul Martell has a higher sum because he has multiple Top Tier
customers.

Key Things to Remember:

SUMIFS can handle multiple criteria, making it more powerful than SUMIF, which only uses
one.

• All the criteria ranges must be the same size as the sum_range.
• Criteria can be:

o Text: "East"
o Numbers: 100
o Operators: ">=01/01/2024"

• Wildcards (* and ?) work in text criteria.
• Dates should be in quotes or refer to a cell value (e.g., ">=" & A2).

Common Business Use Cases:

• Summing sales data by region, product, or sales rep.
• Calculating total expenses by department and month.

• Aggregating units sold where inventory status equals "In Stock" and location is
"Warehouse 1".

UNIQUE

The UNIQUE function in Excel returns a list of unique values from a range or array. It’s
extremely useful when you need to eliminate duplicates from your data or extract distinct
entries for reports, summaries, or data validation lists.

NOTE: UNIQUE works in Excel 365, Excel 2019, and Excel Online (not available in earlier
versions).

Basic Syntax of UNIQUE:

UNIQUE(array, [by_col], [exactly_once])

1. array

The range or array from which you want to return unique values.
(Example: A column of product names, customer IDs, etc.)

2. [by_col] (Optional)

• FALSE (or omitted): Looks for unique rows (vertically).
• TRUE: Looks for unique columns (horizontally).

3. [exactly_once] (Optional)

• FALSE (or omitted): Returns distinct values (removes duplicates).
• TRUE: Returns only values that appear exactly once in the array.

How It Works (Example):

From the dataset above, we want to grab the unique values for the CustSegment field. In
Cell K2 we will type in the following formula “=UNIQUE(H2:H18)” and that will return the
four unique values from the Column. Note that since this is a spillover formula, there
cannot be data below it that conflicts with the values that will be returned. If you reference
just the Column in the formula (i.e., “=UNIQUE(H:H)”) that will also return the column
header.

Key Things to Know:

• Dynamic Array: UNIQUE automatically spills results into neighboring cells. No need
to drag or fill.

• It works horizontally or vertically, depending on how your data is structured.
• It's great for generating dropdown lists, summarizing distinct categories, or feeding

into other formulas like FILTER() or SORT().

Common Business Use Cases:

• Extracting a list of unique customers, products, or regions from a dataset.
• Creating data validation lists for dropdown menus.
• Building summary tables where you need distinct groupings (often combined with

COUNTIF() or SUMIFS()).

Example with a Data Validation Dropdown:

• Use =UNIQUE(A2:A100) to generate a list of unique items.
• Create a named range for that result.

• Use it as the source for a data validation dropdown list.

SORT

The SORT function in Excel allows you to automatically sort a range or array of data by one
or more columns or rows, either ascending or descending. It’s part of Excel’s dynamic array
functions, available in Excel 365, Excel 2019, and Excel Online.

Unlike manual sorting, SORT is dynamic, meaning if the source data changes, the sorted
results update automatically—perfect for dashboards and dynamic reports.

Basic Syntax of SORT:

SORT(array, [sort_index], [sort_order], [by_col])

1. array

The range or array you want to sort.

2. [sort_index] (Optional)

The column or row number to sort by.

• 1 = first column or row in your array
• If omitted, defaults to the first column or row.

3. [sort_order] (Optional)

• 1 for ascending (default)
• -1 for descending

4. [by_col] (Optional)

• FALSE (default): Sorts by row
• TRUE: Sorts by column

How It Works (Example):

Using the same dataset as the UNIQUE example above, we are going to sort the unique
values from CustSegment alphabetically with the formula “=SORT(UNIQUE(H2:H18),1,1).
The first 1 after the UNIQUE formula indicates to sort based on the first row (which is our
only option here). The second 1 tells the formula to sort ascending.

Key Things to Know:

• SORT works dynamically—as your data updates, so does your sorted list.
• It doesn’t overwrite the original data—results are spilled into new cells.
• Works great with UNIQUE, FILTER, and SEQUENCE for building dynamic reports and

dashboards.
• It can sort columns instead of rows if you set by_col to TRUE.

Common Business Use Cases:

• Automatically sorting sales data by highest revenue.
• Creating a leaderboard of top-performing employees.
• Organizing a list of products, customers, or regions alphabetically or by value.
• Sorting dates to show the most recent transactions or events.

